Extensions 1→N→G→Q→1 with N=C22 and Q=C2×Dic11

Direct product G=N×Q with N=C22 and Q=C2×Dic11
dρLabelID
C23×Dic11352C2^3xDic11352,186

Semidirect products G=N:Q with N=C22 and Q=C2×Dic11
extensionφ:Q→Aut NdρLabelID
C221(C2×Dic11) = D4×Dic11φ: C2×Dic11/Dic11C2 ⊆ Aut C22176C2^2:1(C2xDic11)352,129
C222(C2×Dic11) = C2×C23.D11φ: C2×Dic11/C2×C22C2 ⊆ Aut C22176C2^2:2(C2xDic11)352,147

Non-split extensions G=N.Q with N=C22 and Q=C2×Dic11
extensionφ:Q→Aut NdρLabelID
C22.1(C2×Dic11) = Q8.Dic11φ: C2×Dic11/Dic11C2 ⊆ Aut C221764C2^2.1(C2xDic11)352,143
C22.2(C2×Dic11) = C44.D4φ: C2×Dic11/C2×C22C2 ⊆ Aut C22884C2^2.2(C2xDic11)352,39
C22.3(C2×Dic11) = C23⋊Dic11φ: C2×Dic11/C2×C22C2 ⊆ Aut C22884C2^2.3(C2xDic11)352,40
C22.4(C2×Dic11) = C44.10D4φ: C2×Dic11/C2×C22C2 ⊆ Aut C221764C2^2.4(C2xDic11)352,42
C22.5(C2×Dic11) = C23.21D22φ: C2×Dic11/C2×C22C2 ⊆ Aut C22176C2^2.5(C2xDic11)352,121
C22.6(C2×Dic11) = C4×C11⋊C8central extension (φ=1)352C2^2.6(C2xDic11)352,8
C22.7(C2×Dic11) = C42.D11central extension (φ=1)352C2^2.7(C2xDic11)352,9
C22.8(C2×Dic11) = C44⋊C8central extension (φ=1)352C2^2.8(C2xDic11)352,10
C22.9(C2×Dic11) = C44.55D4central extension (φ=1)176C2^2.9(C2xDic11)352,36
C22.10(C2×Dic11) = C22.C42central extension (φ=1)352C2^2.10(C2xDic11)352,37
C22.11(C2×Dic11) = C22×C11⋊C8central extension (φ=1)352C2^2.11(C2xDic11)352,115
C22.12(C2×Dic11) = C2×C44.C4central extension (φ=1)176C2^2.12(C2xDic11)352,116
C22.13(C2×Dic11) = C2×C4×Dic11central extension (φ=1)352C2^2.13(C2xDic11)352,117
C22.14(C2×Dic11) = C2×C44⋊C4central extension (φ=1)352C2^2.14(C2xDic11)352,120

׿
×
𝔽